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Multifractal spectra of mean first-passage-time distributions in disordered chains
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The multifractal characterization of the distribution over disorder of the mean first-passage time in a finite
chain is revisited. Both, absorbing-absorbing and reflecting-absorbing boundaries are considered. Two models
of dichotomic disorder are compared and our analysis clarifies the origin of the multifractality. The phenom-
enon is only present when the diffusion is anomalous.
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I. INTRODUCTION

In the past two decades, a great effort has been devote
the study of diffusion and transport in disordered media
models based on random walks@1–3#. Basically, the dynam-
ics of the system can be described by a master equation
particular probability distribution. Two alternative ways a
usually employed. The first one is based on the probab
P(r ,t) that the walker is on siter at time t when starting
from the origin att50. The second way consists of analy
ing the statistics of the exit time from a given region. In bo
cases, there are exact enumeration techniques which en
us to calculate the corresponding observable in all the p
sible disorder configurations. Thus, we can numerica
reckon the distribution over disorder of the probabil
P(r ,t), or the momentŝPq(r ,t)& of this distribution@3–9#.
In an analogous manner, we can numerically evaluate
distribution of the mean first-passage time~MFPT! over dis-
order, or its moments@10–16#,

M ~q!5E
0

`

Tqr~T!dT, ~1!

wherer(T) is the distribution over disorder andq is a real
number not necessarily integer. The crucial point of diffus
in disordered media is that transport can beanomalous, i.e.,
the mean square displacement of a random walk scales
time as^r 2&5Dt2/dw, wheredw.2 is the anomalous diffu-
sion exponent. A relevant property of the anomalous dif
sion is that it leads to broad distributions. Their mome
cannot be described by a single exponent but an infinite
erarchy of exponents is needed to characterize them@9,13#.
This fact enables us to study the distributions over disor
with the multifractal formalism@17,18#.

Random walks on random fractals~such as the infinite
percolation cluster at criticality! are processes with anoma
lous diffusion, which are characterized by logarithmica
broad distribution functions reflecting an underlying mul
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fractal structure@3,4,6–8,10#. An important issue in these
systems is the nature of the multifractality based on the
namical process or in the steady state~as the voltage drop
distribution in percolation!. For the voltage drop distribution
the multifractal behavior is well established for all values
q @3#; whereas for the dynamical diffusive process the m
tifractality only appears in a range of values ofq @8#. Another
property of these processes is that while the multifractal
havior appears in the distribution of the probabilityP(r ,t), it
is not present in the mean number of distinct sites visited
a particle diffusing on the percolating cluster@19#. Another
dynamical process with ‘‘ultra-anomalous’’ slow motion
the Sinai model@20# for diffusion in a linear chain in the
presence of random fields. For this model, the mean sq
displacement of a random walk follows asymptotically^r 2&
' ln4t. Several studies@5,11,12,14,15,21# have established
the multifractal properties of the model. However, the orig
of the multifractality in this process is yet an open questio

In this work, we revisit the Sinai model and we addre
the last question. Particularly, we compare the behavior
the MFPT distributions over disorder and its moments
two processes with dichotomic disorder. One of them is
Sinai model and the other is a nonanomalous biased ran
walk in a finite disordered chain. The outline of the paper
as follows. In Sec. II, we present expressions for the MF
for a given realization of the~quenched! disorder in the
chain. The description of the models of disorder, employ
in our studies, is given in Sec. III. The moments of the MF
distribution over disorder diverge with the system’s siz
These divergences are characterized by the scaling expon
j(q) in Sec. IV, where we employ the multifractal formalis
@17,18# to calculate the exponentst(q) of the corresponding
partition function. Also, the generalized Renyi dimensio
D(q), and the spectraf (a) are given in that section. Finally
in Sec. V, we briefly summarize the results of our work.

II. MEAN FIRST-PASSAGE TIME IN QUENCHED
DISORDERED CHAINS

We consider the continuous time dynamics of a rand
walk on a discrete one-dimensional lattice with near
neighbor hopping. The walker jumps from siten to site n
©2003 The American Physical Society06-1
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11 with transition probability per unit timewn
1 , or to site

n21 with transition probability per unit timewn
2 . We are

concerned with the exit time of the walker from the fini
intervalD5@2M ,L# on the chain, with at least one absor
ing end. The average of the survival time until the abso
tion, over realizations of the random walk, is the MFP
Recently, we have obtained a general exact expression
the MFPT for a fixed set of transition probabilities$wj

6%
@22#. Let Tn denote the MFPT if the walker initially began a
site nPD. For an interval with both absorbing extrem
(w2(M11)

1 5wL11
2 50) we get

Tn5

11 (
k52M

n21

)
j 52M

k wj
2

wj
1

11 (
k52M

L

)
j 52M

k wj
2

wj
1

3S (
k52M

L
1

wk
1

1 (
k52M

L21
1

wk
1 (

i 5k11

L

)
j 5k11

i wj
2

wj
1D

2S (
k52M

n21
1

wk
1

1 (
k52M

n22
1

wk
1 (

i 5k11

n21

)
j 5k11

i wj
2

wj
1D . ~2!

In this work we fix the starting pointn50 ~defining T
[T0) and we consider two possible boundary conditio
The first one is the interval@2L,L# with absorbing-
absorbing~AA ! extremes. The total number of sites,Ns , in
the interval is 2L11. The MFPT for this case is given b
Eq. ~2! taking M5L. The second case is the interval@0,L#
with reflecting-absorbing~RA! ends. Here,Ns5L11 and
from Eq. ~2!, takingn50, M50, andw0

250, we immedi-
ately obtain for the MFPT@22#,

T5 (
k50

L
1

wk
1

1 (
k50

L21
1

wk
1 (

i 5k11

L

)
j 5k11

i wj
2

wj
1

. ~3!

The effect of the reflecting boundary is the striking simpli
cation of the structure of the equation for the MFPT. Th
fact leads us to consider also the AA boundary conditions
the problem of multifractality of the MFPT distribution ove
disorder.

In finite discrete systems, we can enumerate all the c
figurationsN of disorder. We denote byT( i ) the MFPT for
the i th realization of the quenched disorder. We stress tha
the configurations of disorder are equally probable. Howe
the resulting valuesT( i ) are distributed byr(T), the MFPT
distribution over disorder. Thus, we can compute exactly
moments of the MFPT distribution, given the set of valu
$T( i ) , i 51, . . . ,N%, from the definition given by Eq.~1!,

M ~q![
1

N (
i 51

N
T( i )

q . ~4!

In particular, the MFPT averaged over disorder results
M (1). Fordichotomic models of disorder, in a chain withNs
sites, there areN52Ns possible realizations of the rando
06110
-
.
for

.

n

n-

ll
r,

e
s

n

lattice, which can be easily enumerated. The set of val
$T( i ) , i 51, . . . ,N% can be exactly calculated employing e
pression~2! for the AA boundary conditions, or by Eq.~3!
for the RA extremes.

III. MODELS OF DISORDERED CHAINS

Now, we assume that the hopping probabilitieswj
6 are

strictly positive random variables, chosen independen
from site to site and identically distributed. Additionaly, w
admit that the site transition probabilities are not necessa
symmetric in the sense thatwj

1Þwj
2 . Thus, we can incor-

porate the effects of bias in to the chain by external field
We select the first distribution for the transition probabi

ties in such a way that they satisfy the Sinai condition@20#,
namely, the random variable ln(wj

1/wj
2) has zero mean and

finite variances2. Thus, we consider a dichotomic model b
defining wj

2512wj
1 and prescribingwj

1 to be equal to
1/26e with equal probabilities. The parametere measures
the strength of disorder, and can take values between 0
1/2. e50 corresponds to a simple homogeneous rand
walk, and fore.0 we get a disordered random walk wit
local bias~random field!. It is easily verified that the above
prescriptions satisfy the Sinai condition. Particularly, we o
tain s25 ln2g(e), where g(e)[(112e)/(122e). In the
asymptotic limite→1/2, the variance diverges. The MFP
averaged over disorder for the dichotomic Sinai model
verges asb(e)Ns for Ns→`, where b(e)[(114e)/(1
24e) @23#, whereas the typical value of the first-passa
time, defined as exp(^ ln T&), diverges slower, as
exp(sApNs /2) @24#. Here, the bracketŝ•••& denote the
average over the disorder. Therefore, the distribution of
MFPT over the Sinai disorder has a power-law tail@25#.

It is easily seen that the largest value of the MFPT,Tmax,
is obtained for the RA ends when at all the sites, the ri
jump transition is 1/22e, and the left jump transition is
1/21e. In the asymptotic limit ofNs→`, we obtainTmax
'gNs @14#. For the AA extremes,Tmax cannot be easily evalu
ated. Thus, instead of an analytical expression, in Fig. 1
show a numerical calculation ofTmax for several values ofe.
We see that asymptotically log(Tmax)'Ns, as in the RA case

In Fig. 2, we show the histogram of the distributionr(T)
over the dichotomic Sinai disorder. The figure was co
structed computing Eq.~2! for M5L57 (Ns515), and us-
ing all the possible configurations of disorder. A related fi
ure, for the histogram ofr(T) for chains with the RA
extremes, can be seen in Ref.@14#. The distributionr(T) has
previously been studied@25# for the RA boundary conditions
and results broad.

Our second random biased model for the transition pr
abilities is defined bywj

25wj
12e and prescribingwj

1 to be
equal to 1/2 or 3/2 with equal probabilities. In this case,
parametere measures the strength of the bias, and can t
values between 0 and 1/2. In the limit ofe50, we get a
disordered symmetrical random walk. This dichotom
model corresponds to a class of weak disorder with glo
bias. The quantitiesbk[^(1/wj

1)k& result finite for all k
>1. Therefore, the model does not present anomalous d
6-2
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sion @1#. For the MFPT averaged over disorder with the A
boundary conditions, we obtain up to first order ine @22,26#,

M ~1!.
~L11!2

2b1
21 F11

1

2
~11F!b1eG . ~5!

The asymmetry in the hopping transitions links the stren
of the bias with the fluctuation of the disorder, defined
F[(b22b1

2)/b1
2. In our particular case, we getb154/3,

and F51/4. On the other hand, for the RA extremes, w
obtain up to first order ine @22#,

M ~1!.
~L11!~L12!

2b1
21 F12

L

3
b1eG . ~6!

Strikingly, for these boundary conditions, the fluctuation
the disorder is not present in the averaged MFPT. This
relies on the difference in the structures of Eqs.~2! and ~3!.
In the limit of L→`, M (1) diverges asL2 independently of
the boundary conditions.

In Fig. 3, we show the histogram of the correspond
distribution r(T) over dichotomic weak disorder. Here, w
do not obtain a broad but a more localized distribution.
must stress the difference in the scales used to construc
plots in Figs. 2 and 3. This fact is the first indication of t
different nature in the distribution over disorder betwe
both models. Both models were constructed to get^wj

1&
51, and the main difference among them is in the role of
parametere. This parameter controls the disorder in the S
nai model and regulates the bias in the second model. T
in the Sinai model the bias is local, i.e., the direction of t
bias is randomly drawn in each site, whereas in the sec
model, we are considering a global bias field which points

FIG. 1. Numerical evaluation ofTmax as a function ofNs for
chains with the AA ends andL from 1 to 13.
06110
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the right in all sites. Assuming that the jump probabilities p
unit time involve the Arrhenius factor~see Ref.@26#!, the
landscape for the particle potential is schematically sketc
in Fig. 4 for both models.

FIG. 2. Histogram ofr(T) for a chain with L57, the AA
boundary conditions, and the Sinai disorder withe50.25. We are
using the rescaled variable lnT/ln Tmax and uniform buckets of
width equal to 29. Tmax59824.

FIG. 3. Histogram ofr(T) for a chain with L57, the AA
boundary conditions, and weak disorder withe50.25. We are using
uniform intervals of width equal to 29. Tmax531.75.
6-3
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IV. MULTIFRACTAL ANALYSIS

In order to characterize the divergences of the moment
the MFPT distribution over disorder, we postulate that in
limit Ns→`, the qth moment obeys the scaling relatio
M (q);N j(q). In order to verify this ansatz, we have n
merically reckoned log@M(q)# vs Ns . For chains with the AA
ends, we takeL from 1 to 13 and use Eq.~2! for evaluating
the set$T( i ) ,i 51, . . . ,N%, for a givenL. For chains with the
RA boundary conditions, we takeL from 1 to 20 and use Eq
~3! for calculating the valuesT( i ) , for a fixed size of the
chain. For all values ofe and q, and for both models of
disorder, with the AA or RA extremes, we obtain straig
lines.

The slope of the linear fitting for the Sinai model with th
AA ~RA! ends is plotted in Fig. 5~Fig. 6! as functions ofq,
for three values ofe. For all e, we obtain thatj(q) is a
monotonically increasing function withj(0)50, which is
due to the normalization condition of the distribution. W
observe that for large values ofe, j(q) is a nonlinear func-
tion; whereas in the limit of weak disorder,j(q) becomes a
linear function. For the model of weak disorder, we obta
j(q)5u q, whereu.0 is a decreasing function ofe. There-
fore, for weak disorder, we get a single gap exponent
describing the moments of the MFPT distribution. The ana
sis with both kinds of boundary conditions leads us to qu
tatively similar behaviors for the exponentsj(q), for both
models of disorder described in Sec. III.

Now, let us define the partition function as follows@17#:

Z~q!5
1

S (
i 51

N
T( i )D q (

i 51

N
T( i )

q . ~7!

FIG. 4. Sketches of the particle potential for both kinds of d
order and smalle: ~a! The Sinai model. The difference between tw
consecutive peaks is 2e, with random sign.~b! Weak disorder. The
difference between one peak and the following is alwayse.
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Again, we postulate that in the limitNs→`, the partition
function obeys a scaling relation. Thus, we writeZ(q)
;N 2t(q). It is well known that for nonmultifractal distribu-
tions, the exponentst(q) are linear functions onq, namely,
t(q)5q21. The multifractality appears with a nontrivia
dependence of the scaling exponents onq. For all values ofe
and q, and for both models of disorder, we obtain straig
lines when we plot log@Z(q)# vs Ns . Therefore, the scaling

-

FIG. 5. Plot of the scaling exponentsj(q) for chains with the
AA boundary conditions and the Sinai disorder.

FIG. 6. Plot of the scaling exponentsj(q) for chains with the
RA boundary conditions and the Sinai disorder.
6-4
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ansatz is verified. Here, we have also usedL from 1 to 13 for
the AA ends, andL from 1 to 20 for the RA extremes.

In Fig. 7 ~Fig. 8!, we plot t(q) for chains with the di-
chotomous Sinai model, the AA~RA! ends, and for three
representative values ofe. The functionst(q) satisfy t(0)
521. Additionally, we gett(1)50, which is due to the

FIG. 7. Plot of the scaling exponentst(q) for chains with the
AA boundary conditions and the Sinai disorder, usingL from 5 to
13. The solid line corresponds to the linear relationq21.

FIG. 8. Plot of the scaling exponentst(q) for chains with the
RA boundary conditions and the Sinai disorder, usingL from 6 to
14. The solid line corresponds to the linear relationq21.
06110
normalization condition ofZ(q). In the limit of e→0,
t(q)'q21, and for strong disorder,t(q) exhibits a nonlin-
ear dependence. Thus, the multifractality for the Sinai mo
is unambiguously established, independently of the bound
conditions. For the model of weak disorder, we obtaint(q)
5q21 for all values ofe, within the accuracy of the nu
merical evaluations. Therefore, we have not found multifr
tality in our model of weak disorder, neither with the AA no
with the RA boundary conditions. This result reinforces t
idea that the multifractal phenomenon is only related
anomalous diffusion. Both models are based on the sa
dichotomic rule for assigning values to the transition pro
abilities. Moreover, in both cases we found^wj

1&51. In
spite of these similar characteristics, the selected mo
have quite different behaviors. The random field result
from the Sinai condition is at the basis of the anomalo
diffusion and the origin of the multifractal behavior of th
MFPT distribution over disorder.

The simple plots obtained in the graphs for the functio
t(q) suggest us that the multifractality is due to the prese
of a binomial multiplicative process. For this process, t
mass exponents are@18#

t~q!52
ln~p1

q1p2
q!

ln 2
, ~8!

wherep11p251. This expression immediately satisfies t
conditions t(0)521 and t(1)50, and in the limit p1
5p251/2, results int(q)5q21. For p1,1/2, we get the
limit expressions

t~q!→2q
ln p1

ln 2
for q→2`, ~9!

t~q!→2q
ln p2

ln 2
for q→`. ~10!

In our case, the parametersp1 and p2 are functions of the
strength of disorder (e). In Table I, the values of the fitting
of t(q), using the two parametersp1 andp2, are displayed
for both kinds of boundary conditions. We only obtain
good quality of fitting for small values ofe. For strong dis-
order, the conditionp11p251 is relaxed and we can only fi
both asymptotic regimes of the curves forq→6`. This fact
is a strong indication that the nature of the multifractal ph
nomenon is more complex than a multiplicative rule.

TABLE I. Fitted values for the parametersp1 andp2, using Eq.
~8!, for the plotst(q) in Figs. 7 and 8.

AA RA
e p1 p2 p1 p2

0.00 0.500 0.500 0.500 0.500
0.10 0.461 0.543 0.425 0.602
0.25 0.395 0.700 0.295 0.878
0.35 0.336 0.825 0.173 0.964
6-5
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A usual characterization of multifractality is the gener
ized Renyi dimension spectrum@18# defined by@27#

D~q![
t~q!

q21
. ~11!

In Fig. 9 ~Fig. 10!, we depict the generalized dimensio

FIG. 9. Generalized dimensionsD(q) for chains with the AA
boundary conditions and the Sinai disorder.

FIG. 10. Generalized dimensionsD(q) for chains with the RA
boundary conditions and the Sinai disorder.
06110
spectra for the same conditions and values ofe as given by
Fig. 7 ~Fig. 8!. We find thatD(q) is a monotonically de-
creasing function ofq, and satisfiesD(0)51, which is the
dimension of the support of the distribution.

Taking the Legendre transform oft(q), we can obtain the
multifractal spectrum f (a)52t(q)1qa, where the
Lipschitz-Hölder exponenta is the derivative oft(q) with
respect toq. Figure 11~Fig. 12! shows thef (a) spectra for

FIG. 11. Multifractal spectraf (a) for chains with the AA
boundary conditions and the Sinai disorder.

FIG. 12. Multifractal spectraf (a) for chains with the RA
boundary conditions and the Sinai disorder.
6-6
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MULTIFRACTAL SPECTRA OF MEAN FIRST-PASSAGE- . . . PHYSICAL REVIEW E 67, 061106 ~2003!
the same conditions and values ofe as given by Fig. 7~Fig.
8!. For strong disorder, the curvef (a) becomes broad
whereas fore→0 the spectrum collapses to the point (1,1
As is known, the maximum value off is the fractal dimen-
sion of the support of the measure.

In this work, we have chosen the scaling parameterN to
characterize the system size. In Ref.@14#, a similar multifrac-
tal analysis for the Sinai disorder and the RA boundary c
ditions was based on the scaling parameterTmax. We have
seen in Sec. III thatTmax}N. However, this choice of the
scaling parameter leads to spurious results, such as the v
tion of D(0) with e. This phenomenon is an artifact of th
mathematical selection of the scaling parameter, and n
characteristic property of the system under analysis. On
other hand, for one-dimensional systems, we expect tha
dimension of the support of the multifractal measure is eq
to 1.

Finally, we derive the relation between the expone
j(q) and t(q). From the definitions given by Eqs.~4! and
~7!, we inmediatly obtain

Z~q!5
N 12q

M ~1!q
M ~q!. ~12!

Using the scaling ansatz in the last equation and taking lo
rithms, we get

t~q!5q212j~q!1qj~1!. ~13!
ac

s

. A

ys

E

E
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Particularly, the last relation satisfies inmediately thatt(0)
521 andt(1)50. From the result quoted in Sec. III, fo
chains with the RA ends, we foundj(1)5 log2b(e).

V. CONCLUDING REMARKS

In this work, we have considered the distribution of t
MFPT over two classes of disorder, the Sinai and anot
dichotomic model with global bias and nonanomalous dif
sion. Our results confirm us that the multifractality is relat
only to anomalous diffusion.

The multifractal behavior in the MFPT distribution ove
the Sinai disorder is not a consequence of the multiplica
structure of Eq.~2! or ~3! ~the expressions for the MFPT fo
a fixed realization of disorder!, as was stated in a previou
report@14#. The multifractality is an inherent attribute of th
strong disorder in the Sinai model, and is well established
both kinds of boundary conditions. Moreover, the multifra
tal signature found in the spectra obtained suggests us
the origin of the phenomenon is more complex than a bi
mial multiplicative process.
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@11# C. Van den Broeck, J. Stat. Phys.65, 971 ~1991!.
@12# K.P.N. Murthy, S. Rajasekar, and K.W. Kehr, J. Phys. A27,

L107 ~1994!.
@13# T. Wichmann, A. Giacometti, and K.P.N. Murthy, Phys. Rev.

52, 481 ~1995!.
@14# K.P.N. Murthy, K.W. Kehr, and A. Giacometti, Phys. Rev.

53, 444 ~1996!.
h,

.

@15# K.P.N. Murthy, A. Giacometti, and K.W. Kehr, Physica A224,
232 ~1996!.

@16# K. Kim, J.S. Choi, and Y.S. Kong, J. Phys. Soc. Jpn.67, 1583
~1998!; K. Kim, G.H. Kim, and Y.S. Kong, Fractals8, 181
~2000!.

@17# T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B
Shraiman, Phys. Rev. A33, 1141~1986!.

@18# J. Feder,Fractals ~Plenum, New York, 1988!.
@19# L.K. Gallos, P. Argyrakis, and K.W. Kehr, Phys. Rev. E52,

1520 ~1995!; K.P.N. Murthy, L.K. Gallos, P. Argyrakis, and
K.W. Kehr, ibid. 54, 6922~1996!.

@20# Y.G. Sinai, Theor. Probab. Appl.27, 256 ~1982!.
@21# R. Harisha and K. Murthy, Physica A287, 161 ~2000!.
@22# P.A. Pury and M.O. Ca´ceres, J. Phys. A36, 2695~2003!.
@23# K.P.N. Murthy and K.W. Kehr, Phys. Rev. A40, 2082~1989!;

41, 1160~E! ~1990!.
@24# S.H. Noskowicz and I. Goldhirsch, Phys. Rev. Lett.61, 500

~1988!.
@25# K.W. Kehr and K.P.N. Murthy, Phys. Rev. A41, 5728~1990!;

S.H. Noskowicz and I. Goldhirsch,ibid. 42, 2047~1990!.
@26# P.A. Pury and M.O. Ca´ceres, Phys. Rev. E66, 021112~2002!.
@27# Note that our definition oft(q) is equal to minus the mas

exponents used in Ref.@18#. Usually, the mass exponents a
defined in the limit of a scaling parameter going to zero. In o
case, the scaling relations hold for the parameterN→`.
Therefore, we use the denominator (q21) in the definition of
D(q).
6-7


